Contribution from the Department of Physical and Inorganic Chemistry, University of Adelaide, Adelaide, South Australia 5001, Australia, and the Department of Chemistry, Washington State University, Pullman, Washington 99164

Oxygen-17 Magnetic Resonance and Temperature-Jump Spectrophotometric Study of the Square Planar-Octahedral Equilibrium in the 1,4,7,10-Tetraazacyclododecanenickel(II) System

JOHN H. COATES, DEWAN A. HADI, STEPHEN F. LINCOLN,* HAROLD W. DODGEN, and JOHN P. HUNT*

Receiued September *29,* 1980

A kinetic study of the system

$$
\mathrm{Ni}([12] \text{aneN}_4)^{2+} + 2\mathrm{H}_2\mathrm{O} \xrightarrow[k_4]{k_1} \mathrm{Ni}([12] \text{aneN}_4)\mathrm{H}_2\mathrm{O}^{2+} + \mathrm{H}_2\mathrm{O} \xrightarrow[k_2]{k_2} \mathrm{Ni}([12] \text{aneN}_4)(\mathrm{H}_2\mathrm{O})_2^{2+}
$$

in which the equilibrium k_1/k_1 is considered to be rate determining in the establishment of the overall equilibrium between the square-planar and octahedral species is reported. Oxygen-17 NMR studies at 5.75, 11.5, and 13.2 MHz in 3.00 mol dm^{-3} aqueous LiClO₄ solution give an exchange rate constant for a single aquo ligand in Ni($[12]$ aneN₄)(H₂O)₂²⁺: $k_{\text{H}_2\text{O}}$ $(k=k_2/2) = (2.10 \pm 0.17) \times 10^7$ s⁻¹ (298.2 K) $(\Delta H^* = 32.7 \pm 1.1$ kJ mol⁻¹ and $\Delta S^* = 5.0 \pm 4.6$ J K⁻¹ mol⁻¹). Spectrophotometric temperature-jump and equilibrium studies yield $k_1(298.2 \text{ K}) = (5.8 \pm 0.3) \times 10^3 \text{ mol}^{-1} \text{ dm}^3 \text{ s}^{-1}$, $\Delta H =$ 43.1 ± 1.7 kJ mol⁻¹, $\Delta S^* = -28.2 \pm 5.9$ J K⁻¹ mol⁻¹, $k_{-1}/k_2(298.2 \text{ K}) = 0.016$ mol dm⁻³, and an overall equilibrium constant $K_{eq}(298.2 \text{ K}) = [\text{Ni}([12] \text{ane} N_4)^{2+}] / [\text{Ni}([12] \text{ane} N_4)(H_2O)_2^{2+}] = (490 \pm 20) \times 10^{ \Delta S^{\circ}$ = 25.1 \pm 0.9 J K⁻¹ mol⁻¹ in 3.00 mol dm⁻³ aqueous LiClO₄. Data obtained at additional LiClO₄ concentrations are reported, and comparisons are made with related nickel(I1) systems.

Introduction

The equilibrium in (1) between the low-spin square-planar

$$
\frac{\text{Nil}^{2+} + 2\text{H}_2\text{O}}{\text{low spin}} \frac{\kappa_1}{\kappa_{-1}} \text{Nil} \text{H}_2\text{O}^{2+} + \text{H}_2\text{O} \frac{\kappa_2}{\kappa_{-2}} \text{Nil} \text{H}_2\text{O}_2^{2+} (1) \text{high spin}
$$

 $({}^{1}A_{1g})$ and high-spin octahedral $({}^{3}A_{2g})$ nickel(II) complexes with tetradentate polyamine ligands (L) has been the subject of considerable investigation;¹⁻⁷ nevertheless there is no report of a study in which the reaction dynamics of the sequential equilibria k_1/k_{-1} and k_2/k_{-2} have been separately characterized. It is desirable to gain an insight into the factors which control the lability of these equilibria and to try to determine which of them embraces the rate-determining step for the square planar to octahedral interconversion. For this study 1,4,7,10-tetraazacyclododecane,^{8,9} [12]aneN₄, has been chosen to represent L in (1) as it comes from a series of macrocyclic tetraaza ligands for which the nickel(I1) complexes have been particularly well characterized spectroscopically and ther mod ynamically.¹⁻³ The smallest of the macrocyclic tetraaza ligands, $[12]$ ane $N₄$, presents a macrocyclic hole which is variously estimated to constrain the metal-nitrogen distance to 1 .702 or 1.8 1 **A'O** whereas the observed averaged low-spin and high-spin nickel(II) distances in polyamine complexes are 1.89 ± 0.03 and 2.10 ± 0.05 Å, respectively.^{2,3,10,11} Thus coplanarity of nickel(I1) and the four donor nitrogen atoms in Ni($[12]$ aneN₄)(H₂O)₂²⁺ is improbable and cis stereochemistry is inferred from spectroscopic data¹¹ and studies of *cis*-
Co([12]aneN₄)X₂³⁺ complexes,⁸ whereas such coplanarity in low-spin $\text{Ni}([12] \text{ane} \text{N}_4)^{2+}$ is more readily achieved. (The cis stereochemistry of high-spin Ni($[13]$ ane N_4) X_2 may be similarly explained.¹²) These low- and high-spin species exist in concentrations in aqueous solution which facilitate both temperature-jump spectrophotometric and *"0* NMR kinetic studies of the system under identical conditions; and the high stability of the two complexes and the very slow dissociation of the $[12]$ ane N_4 ligand even under strongly acidic or basic conditions precludes the interference of other reactions with

the study of the square planar-octahedral equilibrium.

Experimental Section

Synthesis of 1,4,7,10-Tetraazacyclododecanenickel(II) Diperchlorate, $[Ni([12]aneN₄)](CO₄)₂$. $Ni(ClO₄)₂·6H₂O (1.5 g)$ was dissolved in boiling ethanol (50 cm³), and $[12]$ ane N_4^9 (0.8 g) in ethanol (30 cm³) was added dropwise with stirring. The reaction mixture was refluxed for 15 min and was then evaporated to dryness. The brownish yellow product was dried over silica gel prior to thorough digestion in four 30-cm³ lots of chloroform (in which $[Ni([12]aneN₄)](ClO₄)₂$ is insoluble) to remove residual excess $[12]$ ane $N₄$. The last traces of water were removed by digestion in triethyl orthoformate for 2 h. The product was then filtered and washed with chloroform under dry nitrogen (yield 1.3 g). Anal. Calcd for $[Ni(C_8H_{20}N_4)](ClO_4)_2$: Ni, 13.66; C, 22.35; H, 4.69; N, 13.03. Found: Ni, 13.45; C, 21.9; H, 4.71; N, 12.52. The $[Ni([13]aneN₄)](ClO₄)₂$ complex was prepared in the same way. Anal. Calcd for $[Ni(C_9H_{22}N_4)](ClO_4)_2$: Ni, 13.23; C, 24.35; H, 5.00; N, 12.62. Found: Ni, 13.08; C, 24.83; H, 5.20; N, 12.72. The two macrocyclic ligands gave good microanalyses also, but as it was found that the published preparative method⁹ can sometimes give significant amounts of other macrocyclic species, the purity of the ligands was also checked by ¹³C NMR. In D₂O, $[12]$ ane $N₄$ is characterized by a single resonance 14.2 ppm downfield and $[13]$ ane N_4 by resonances 16.7, 16.5, 15.7, and 15.4 ppm downfield and one resonance 3.3 ppm upfield (which **is** assigned to the central carbon in the C_3 segment) from the CH_3 resonance of tert-butyl alcohol in a capillary. All other chemicals used in this study were of good reagent grade and were used without further purification.

Instrumental Methods. The magnetic moment of solid [Ni([12]aneN₄)](ClO₄)₂ was determined by using the Gouy method,¹³ and diamagnetic susceptibility corrections were calculated from Pascal's

- Busch, D. H. *Acc. Chem. Res.* **1978, 11, 392.**
- Fabbrizzi, L.; Micheloni, **M.;** Paoletti, P. *Inorg. Chem.* **1980, 19, 535.** Fabbrizzi, L. J. Chem. **SOC.,** *Dalton Trans.* **1979, 1857.**
-
- Ivin, K. J.; Jamison, R.; McGarvey, J. J. *J. Am. Chem. Soc.* 1972, 94, (4) **1763.**
-
- Creutz, C.; Sutin, N. J. Am. Chem. Soc. 1973, 95, 7177.
Wilkins, R. G.; Yelin, R.; Margerum, D. W.; Weatherburn, D. C. J.
Am. Chem. Soc. 1969, 91, 4326.
Bosnich, B.; Gillard, R. D.; McKenzie, E. D.; Webb, G. A. J. Chem.
- Soc. A 1966, 1331.
Collman, J. P.; Schneider, P. W. Inorg. Chem. 1966, 5, 1380.
Richman, J. E.; Atkins, T. J. J. Am. Chem. Soc. 1974, 96, 2268.
Martin, L. Y.; DeHayes, L. J.; Zompa, L. J.; Busch, D. H. J. Am.
-
-
- *Chem. SOC.* **1974,96,4046.**
- Smierciak, R.; Passariello, J.; Blinn, E. L. *Inorg. Chem.* **1977, 16, 2646.** Martin, L. Y.; Sperati, C. R.; Busch, D. H. *J.* Am. *Chem. SOC.* **1977,** (12) **99, 2968.**
- Lewis, J., Wilkins, R. G., Eds. "Modern Coordination Chemistry"; (13) Interscience: New York, **1960.**

Table I. Spectrophotometric Equilibrium and Kinetic Data for the Ni([12]aneN₄)²⁺/Ni([12]aneN₄)(H₂O)₂²⁺ System^a

$[LICIO_{\lambda}],$ mol dm^{-3}	$10^4 K_{eq}$ (298.2 K)	ΔH° , kJ $mol-1$	ΔS° . J K^{-1} mol ⁻¹	106 τ , s	$103k$, (298.5 K). mol^{-1} dm ³ s ⁻¹	ΔH^{\ddagger} , kJ $mol-1$	ΔS^{\ddagger} , J K^{-1} mol ⁻¹
$\bf{0}$	30.0 ± 2.0	23.6 ± 0.3	30.8 ± 1.1				
0.10	33.0 ± 2.0	24.2 ± 0.8	33.7 ± 2.7				
1.00	79.0 ± 4.0	22.1 ± 0.2	34.0 ± 0.7				
2.00	200 ± 10	19.6 ± 0.5	33.3 ± 1.5	4.4 ± 0.2 (286.1 K), 3.4 ± 0.2 (291.5 K). 2.2 ± 0.1 (296.4 K)	9.5 ± 0.5	44.5 ± 9.3	-19.4 ± 32
3.00	490 ± 20	15.0 ± 0.3	25.1 ± 0.9	7.0 ± 0.3 (287.2 K). 4.5 ± 0.2 (293.4 K). 3.3 ± 0.2 (298.8 K)	5.8 ± 0.3	43.1 ± 1.7	-28.2 ± 5.9
4.00	1070 ± 50	13.9 ± 0.3	27.9 ± 0.9	2.8 ± 0.1 (305.8 K), 2.3 ± 0.1 (310.6 K), 2.0 ± 0.1 (316.0 K)	5.6 ± 0.3	20.9 ± 6.1	-103 ± 20

^a In 2.00, 3.00, and 4.00 mol dm⁻³ LiClO₄, [H₂O] = 50.9, 48.6, and 46.1 mol dm⁻³, respectively. Each τ value represents the average of at least five determinations.

Figure 1. The solid lines are the spectra of the Ni([12]aneN₄)²⁺/ $Ni([12]aneN₄)(H₂O)₂²⁺$ system in aqueous 4.00 mol dm⁻³ LiClO₄ solution. The peak at 443 nm shows a progressive increase in intensity in the spectra recorded at 293.7, 302.5, 313.2, 323.0, 332.3, and 344.0 K, respectively.

constants. Magnetic moments in solution were determined by the Evans method,¹⁴ using precision coaxial NMR tubes (Wilmad) and a Bruker HX90E spectrometer for which temperature control was ± 0.3 K. Corrections were made for the experimentally determined density variation of the solutions with temperature. Diamagnetic corrections were calculated from Pascal's constants, and the bulk susceptibility of aqueous 4.00 mol dm^{-3} LiClO₄ was determined with use of the Gouy method ($\chi = -0.5328 \times 10^{-6}$ cgsu/g). The reference signals for the $CH₃NO₂$ and aqueous LiClO₄ solutions were provided by 3% w/w tetramethylsilane and *tert*-butyl alcohol, respectively. Oxygen-17 NMR measurements were carried out on a variable-field spectrometer built in these laboratories (Pullman) at 13.2, 11.5, and 5.75 MHz. The ¹⁷O resonances were observed in the absorption mode and the half-width at half-maximum amplitude, W , was derived through a computer fit of the Lorentzian line shape. Sample temperature control was ±0.1 K. The ¹⁷O water was 10% ¹⁷O (normalized in H content) and was obtained from YEDA R and D Co., Ltd., Rehovot, Israel.

Spectrophotometric measurements were made with a Zeiss DMR 10 spectrophotometer (cell temperature control ± 0.2 K), and temperature-jump spectrophotometer measurements were carried out on equipment constructed (Adelaide) in a manner similar to that described in the literature.¹⁵ The heating relaxation time for a 10-K temperature jump $\leq 0.4 \mu s$ in the 2.00–4.00 mol dm⁻³ aqueous LiClO₄ solutions was determined with the use of phenol red indicator. Longer heating relaxation times were observed in the ≤ 2.00 mol dm⁻³ LiClO₄ solutions, and hence no relaxation studies of the $[12]$ ane $N₄$ system were carried out under these conditions.

Results

The visible spectrum of the aqueous nickel(II)-[12]ane N_4 system is markedly dependent upon temperature and ionic strength (Figure 1 and Table I) such that an increase in either

⁽¹⁵⁾ Erman, J. E.; Hammes, G. G. Rev. Sci. Instrum. 1966, 37, 746.

Figure 2. Variation of K_{eq} with temperature and [LiClO₄]. The filled circles and squares represent spectrophotometric data obtained in (a) 4.00, (b) 3.00, (c) 2.00, (d) 0.00 (plotted as $5K_{eq}$), and (e) 1.00 mol dm^{-3} aqueous LiClO₄ solution, and the solid lines represent the linear regression lines. The filled triangles represent data obtained from magnetic moment measurements in 4.00 mol dm⁻³ aqueous LiClO₄ solution. The open squares, circles, and triangles represent data obtained from ¹⁷O NMR shift studies at 5.75, 11.5, and 13.2 MHz in 3.00 mol dm^{-3} aqueous LiClO₄ solution.

variable produces a shift in the square planar-octahedral equilibrium toward the former state.¹⁶ The two isosbestic points illustrated for 4.00 mol dm⁻³ aqueous LiClO₄ solution in Figure 1 and similarly observed in the other solutions listed in Table I suggest the occurrence of two predominant species: high-spin Ni([12]aneN₄)(H₂O)₂²⁺, most probably in the cis
configuration,^{11,12} and low-spin Ni([12]aneN₄)²⁺. For the
purposes of determining the equilibrium constant, K_{eq} = [square planar]/[octahedral], the molar extinction coefficient $(71.0, 443 \text{ nm})$ of Ni $([12]$ aneN₄)²⁺ in nitromethane, determined from 3.49 \times 10⁻³ and 1.49 \times 10⁻² mol dm⁻³ solutions, was assumed to be identical with that of the square-planar species in aqueous solution. The spectrum of an aqueous solution 4.53×10^{-2} mol dm⁻³ in the complex alone, from which the band at 443 nm was absent at 274 K, was taken as the spectrum of Ni([12]aneN₄)(H₂O)₂²⁺. The K_{eq} values

⁽¹⁶⁾ Fabbrizzi, L. *Inorg. Chem.* 1977, 16, 2667. A similar shift in equilibrium is reported in 6 mol dm⁻³ aqueous NaClO₄, but isosbestic points were not observed.

Table **II.** Kinetic and *"0* NMR Parameters for Water Exchange on Nickel(I1) Species

$Ni([12]$ ane N ₄) $(H, O),$ ²⁺	Ni- $(H_2O)_{6}^{2+d}$	Ni(trien) $(H, O),$ ^{2+b}
$(4.76 \pm 0.39) \times 10^{-8}$	3.18×10^{-5}	1.75×10^{-6}
$(2.10 \pm 0.17) \times 10^{7}$	3.14×10^{4}	5.7×10^{5}
32.7 ± 1.1	56.9	34.4
5.0 ± 4.6	32.1	-19.2
$(2.56 \pm 0.08) \times 10^{-6}$		
-9.04 ± 0.54		
119 ± 6		
-14.2 ± 1.4		
23.2	22.2	22.5

Data from ref 19. UP Data from ref 23.

are plotted in Figure 2 and the associated thermodynamic parameters appear in Table **I.**

In the solid state and in nitromethane solution, [Ni([12] aneN₄)](ClO₄)₂ was found to be diamagnetic by using the Gouy¹³ and Evans¹⁴ methods, respectively. The magnetic moment, μ_{eff} , of Ni([12]aneN₄)(H_2O_2 ²⁺ was determined to be 2.90 μ_B by Evans' method in aqueous 0.101 mol dm⁻³ solutions of the complex alone at 274 K. This value compares with μ_{eff} = 3.06, 3.16, and 3.15 μ_{B} respectively for the analogous dichloro, dibromo, and dinitrato¹¹ species in the solid state. In 4.00 mol dm⁻³ aqueous LiClO₄ solution, K_{eq} was determined from the observed magnetic moment, μ_{obsd} , of a solution of 4.06×10^{-2} mol dm⁻³ in the complex, within the temperature range 288.3-362.5 K, by using eq 2 and by as-

$$
K_{\text{eq}} = (\mu_{\text{obsd}}^2 - \mu_{\text{eff}}^2) / \mu_{\text{obsd}}^2 \tag{2}
$$

suming the square-planar species to be diamagnetic in aqueous solution.¹⁷ These data are seen to be in reasonable agreement with the spectrophotometric data (Figure 2).

The temperature-jump relaxation of the square planaroctahedral equilibrium observed at 443 nm in 2.00, 3.00, and 4.00 mol dm⁻³ aqueous LiClO₄ in the complex concentration range $0.047-0.140$ mol dm⁻³ is characterized by a single concentration-independent relaxation time (Table I). These τ values are $>10^2 \tau_M$, the lifetime of a water molecule in Ni([12]aneN₄)(H₂O)₂²⁺, derived from the ¹⁷O NMR studies (Table **11)** discussed below, and thus *7* characterizes the equilibrium between $Ni([12] and 2^{2+}$ and $Ni([12]$ aneN₄)H₂O²⁺ shown in eq 1. Under these conditions, τ is related^{4,18} to the rate constants of eq 1 through eq 3. With

$$
1/\tau = k_1[H_2O](1 + k_{-1}k_{-2}/(k_1k_2[H_2O]^2))
$$

= $k_1[H_2O](1 + K_{eq})$ (3)

use of the K_{eq} data from Table I, the k_1 and associated ΔH^* and ΔS^* values may be derived through eq 3 as may k_{-1}/k_{2} - $(298.2 \text{ K}) = 0.016 \text{ mol dm}^{-3}$ for 3.00 mol dm⁻³ aqueous LiClO₄ solution by substituting $k_{-2} = 2k_{\text{H}_2O}$ (Table II). In the Ni- $([13]$ ane N_4) $(H_2O)_2^2$ ⁺ system a spectral change consistent with a shift in the square planar-octahedral equilibrium was observed in temperature-jump experiments, but it occurred at the same rate as the temperature rise in the cell, indicating that $\tau \le 0.4 \mu$.

Shift and broadening measurements of the ¹⁷O-water resthe same rate as the temperature rise in the cell, indicating

Shift and broadening measurements of the ¹⁷O-water resonance of a 0.0498 mol kg^{-1} solution of $[Ni([12]aneN₄)]$ - $(C1O₄)₂$ using pure water as a reference were made at 11.5 MHz over the temperature range 273-363 K. More extensive measurements were made on a solution 0.0498 mol kg⁻¹ in $[Ni([12]aneN₄)](ClO₄)₂$ and 3.00 mol dm⁻³ in LiClO₄ by

Figure 3. Oxygen-17 NMR data obtained in 3.00 mol dm⁻³ at 5.75, 11.5, and 13.2 **MHz** are shown as squares, circles, and triangles, respectively, and data obtained in the absence of LiClO, at 11.5 **MHz** are shown as inverted triangles. The upper and lower sets of solid curves are respectively the simultaneous nonlinear least-squares best fits of the line broadening, T_{2p} ^{*}, and shift, Q, data obtained in 3.00 mol dm-' aqueous LiC104 solution from *eq* 8 and 9.

using an aqueous 3.00 mol dm^{-3} LiClO₄ solution as reference over the temperature range 253-363 K at 5.75, 11 **S,** and 13.2 MHz. These data are plotted in Figure 3.

The ¹⁷O shift and line-broadening data yield Q and T_{2p} ^{*} through eq 4 and 5, respectively, where *m* is the [Ni([12]-

$$
Q = T(\Delta f/f_0)(55.5/m) \tag{4}
$$

$$
\frac{1}{T_{2p}^*} = \frac{1}{T_{2p}} - \frac{1}{T_{2o}} = \frac{55.5(2\pi)(\Delta W)}{m}
$$
 (5)

aneN₄)](ClO₄)₂ concentration in mol kg⁻¹, Δf and ΔW are the shift and increase in half-width (in Hz) at half-maximum amplitude, respectively, of the 17 O resonance of the [Ni- $([12]aneN₄)]$ (ClO₄)₂ solution relative to that of the reference solution, f_0 is the spectrometer frequency, and T is the absolute temperature. In the NMR fast-exchange limit Q should become independent of temperature and reach a limiting value $Q_{\text{lim}}^{\text{o}}$ provided that a single species is present and that the magnetic moment of Ni($[12]$ aneN₄)($\dot{H_2O}_{2}$ ²⁺ obeys Curie's law. (For example solutions of $\text{Ni}(\text{H}_2\text{O})_6^{2+}$ exhibit this behavior with $Q_{\text{lim}}^0 = 24.19$ With the assumption that Ni-
([12]aneN₄)²⁺ neither shifts nor broadens the ¹⁷O resonance, the actual Q_{lim} value is given by eq 6, where χ_p is the mole

$$
Q_{\rm lim} = \chi_{\rm p} Q_{\rm lim}^0 \tag{6}
$$

fraction of Ni($[12]$ aneN₄)(H₂O)₂²⁺ present. Equations 1 and 6 give

$$
K_{\text{eq}} = (Q_{\text{lim}}^{0} - Q_{\text{lim}}) / Q_{\text{lim}} \tag{7}
$$

Equation 7 may be used to calculate K_{eq} from the high-temperature shift measurements if Q_{lim}^0 is known. In practice Q_{lim}^0 cannot be determined precisely from the NMR data alone, but K_{eq} calculated with $Q_{\text{lim}}^{\circ} = 7.5$ for the 3.00 mol dm⁻³ $LiClO₄$ solution is in excellent agreement with the spectrophotometrically determined K_{eq} values (Figure 2 and Table I) and is also consistent with the maximum value of $Q_{\text{lim}} =$

⁽¹⁷⁾ Evans, D. F.; T. **A.** *J. Chem. Soe., Dalton Trans.* **1979, 723.**

⁽¹⁸⁾ Farina, R. **D.;** Swinehart, J. H. *J. Am. Chem. SOC.* **1969,** *91,* **568.**

⁽¹⁹⁾ Bechtold, D. B.; Liu, *G.;* Dodgen, **H.** W.; **Hunt,** J. P. *J. Phys. Chem.* **1978,** *82, 333.*

7.38 observed in the absence of $LiClO₄$. The spectrophotometrically determined K_{eq} , ΔH° , and ΔS° values obtained in 3.00 mol dm⁻³ LiClO₄ solution together with $Q_{\text{lim}}^{\circ} = 7.5$ were used in the simultaneous fitting of the Q and T_{2p}^* data to the Swift and Connick equations²⁰ (8) and (9), using the Dye and

$$
Q = \chi_{\rm p} \left[\frac{n [T(\Delta \omega_{\rm M})/\omega_0]}{\tau_{\rm M}^2 \left[\left(\frac{1}{T_{2\rm M}} + \frac{1}{\tau_{\rm M}} \right)^2 + (\Delta \omega_{\rm M})^2 \right]} + Q_0 \right] \qquad (8)
$$

$$
\frac{1}{T_{2\rm p}^*} = \chi_{\rm p} \frac{n}{\tau_{\rm M}} \frac{\frac{1}{T_{2\rm M}^2} + \frac{1}{T_{2\rm M} \tau_{\rm M}} + (\Delta \omega_{\rm M})^2}{\left(\frac{1}{T_{2\rm M}} + \frac{1}{\tau_{\rm M}} \right)^2 + (\Delta \omega_{\rm M})^2} \qquad (9)
$$

Nicely²¹ nonlinear least-squares program. In eq 8 and 9, *n* is the number of coordinated water molecules (here set equal to 2 on the basis of the A/h value as discussed below), T_{2M} is the ¹⁷O transverse relaxation time of coordinated water, τ_M is the mean lifetime of one coordinated water molecule, $\Delta \omega_M$ is the frequency shift (rad/s) between the $17O$ resonances of coordinated and bulk water, and Q_0 is the portion of Q_{lim} ⁰ arising from interactions outside the first coordination sphere. Other relevant equations used are (10)-(13). Equation 10

$$
\chi_{\rm p} = 1/(1+K) \tag{10}
$$

$$
\tau_M = \frac{h}{kT} e^{-\Delta S^*/R} e^{\Delta H^*/RT} \tag{11}
$$

$$
\frac{nT(\Delta\omega_{\rm M})}{\omega_0} = Q_{\rm lim}^0 - Q_{\rm o}
$$
 (12)

$$
T_{2M} = T_{2M}{}^{0}e^{E(X-X_0)/R} + \frac{T_{2M}'}{f_0{}^{2}}e^{E'(X-X_0)/R}
$$
 (13)

$$
X = 10^3 / T \qquad X_0 = 10^3 / 298.2
$$

is based upon equilibrium 1, and eq 11, in which ΔH^* and ΔS^* are the enthalpy and entropy of activation for the exchange of a water molecule in the first coordination sphere, arises from the absolute reaction rate theory. Equation 12 arises from the high-temperature limiting form of (8). Equation 13 is a phenomenological equation constructed to reproduce the frequency and temperature dependence of T_{2M} indicated by the data. The form of eq 13 may be arrived at by considering a combination of rotationally modulated zero-field splitting and an anisotropic **g** tensor as sources of electron spin relaxation in the system, but in the data treatment it is simply used as an empirical equation. Initial attempts to fit the data indicated that an equation based on an impact or rotationally modulated zero-field splitting²² alone was inadequate.

In fitting the shift and line-broadening data to eq 8 and 9, ΔH^* , ΔS^* , T_{2M}^0 , T_{2M}' , E , and E' were all allowed to vary. As the shift **data** do not extend significantly into the region where τ_M is dominant in determining the magnitude of Q, where Q_0 would become important, a value of 0.3 was assigned to *Qo* on the basis of previous observations on nickel(II).¹⁹ The parameters derived from the data fitting appear in Table I, and the best-fit computed curves appear in Figure 3. The value of the scalar coupling constant *A/h* was calculated from eq 12 in which $\Delta \omega_M = [S(S+1)/3k_BT](A/h)h\omega_S$ where *S* is the summed unpaired electron spin, k_B is Boltzmann's constant,

Coates et al.

and $\omega_{\rm S}$ is the electronic Larmor precession frequency. The value of A/h calculated in this way is close to that observed^{19,23} (Table II) for $Ni(H₂O)₆²⁺$ and $Ni(trien)(H₂O)₂²⁺$ (trien = triethylenetetramine) and, on the assumption that *A/h* is not significantly dependent upon the composition of the first *co*ordination sphere, indicates that two water molecules are coordinated per nickel(II), consistent with the stoichiometry Ni([12]ane N_4)(H₂O)₂²⁺. The Q and T_{2p} ^{*} data obtained in the absence of LiC104 were not fitted, but the proximity **of** these data to those obtained in 3.00 mol dm⁻³ solution suggests that τ_{H_2O} is probably not markedly dependent upon electrolyte concentration.

The spectrophotometric and ¹⁷O NMR data together indicate that $Ni([12]aneN₄)H₂O²⁺$ is unlikely to exist in concentrations of more than a few percent of the total nickel(I1) concentration, and subsequent discussion is based upon this assessment.

Discussion

The increased lability of Ni($[12]$ aneN₄)(H₂O)₂²⁺ over $Ni(H₂O)₆²⁺$ (Table II) is consistent with the well-established tendency of coordinated amines to labilize aquo ligands in octahedral nickel(II) systems.^{23,24} The larger ΔH^* term characterizing $Ni(H₂O)₆²⁺$ is the major thermodynamic factor for the reduced lability of this species by comparison to Ni- $([12]$ ane N_4) $(H_2O)_2^{2+}$. It has been suggested, most recently on the basis of ΔV^* measurements,²⁵ that Ni $(H_2O)_6^{2+}$ undergoes water exchange through an I_d mechanism. This idea suggests using eq 1 to discuss both water-exchange and the species-interconversion mechanisms in terms **of** the equilibria given there, although, of course, other possibilities exist. The greater lability of the Ni([12]aneN₄)(H_2 O)₂²⁺ system is largely a consequence of its ΔS^* being small whereas that characterizing $Ni(trien)(H_2O)_2^{2+}$ is significantly negative. In principle the Ni(trien)(H₂O)₂²⁺ species may exist as the α -cis and β -cis isomers, in which the aquo ligands are respectively equivalent and nonequivalent, and also as the trans isomer.^{6,7} From spectroscopic data it appears that the cis configuration is preferred,^{6} and the observation of a single water-exchange process in the **170** studies (exchange rates differing by a factor of <3 are unlikely to be separately distinguished) suggests either that one isomer predominates in solution or that the rates of exchange of water in the various isomeric sites available in Ni(trien) $(H₂O)₂²⁺$ are very similar. As a consequence of this uncertainty, it is not possible to present detailed stereochemical arguments in explanation **of** the kinetic differences between the Ni([12]aneN₄)(H₂O)₂²⁺ and Ni(trien)(H₂O)₂²⁺ systems. Nevertheless it is possible that the ligand restraint which requires nickel(I1) to be out of the plane of the four nitrogen atoms in Ni([12]aneN₄)(H₂O)₂²⁺ results in a relatively small stereochemical rearrangement to form the highspin transition state and intermediate species $Ni([12]$ aneN₄)H₂O²⁺ in which the nickel(II) is out of the ligand N₄ plane also. (The five-coordinate high-spin species Ni(tb- $[12]$ ane N_4)X⁺, where X is Cl, Br, or SCN and tb $[12]$ ane N_4 is 1,4,7,1O-tetrabenzyl- **1,4,7,1O-tetraazacyclododecane,** are reported¹¹ to have trigonal-bipyramidal geometry, but in view of the small energetic differences²⁶ between this geometry and square-based pyramidal geometry it is possible that Ni- $([12]$ ane N_4) H_2O^{2+} could have either geometry.) In the case of Ni(trien) $(H_2O)_2^2$ ⁺ the greater flexibility of trien should permit a greater stereochemical rearrangement in the formation of the transition state. This is conjunction with the concurrent solvent rearrangements is the origin of the ΔS^*

2754.

⁽²⁰⁾ Swift, T. J.; Connick, R. E. *J. Chem. Phys.* **1962, 37, 307; 1964,** *41,* **2553.**

⁽²¹⁾ Dye, J. **L.; Nicely, V. A.** *J. Chem. Educ.* **1971, 48,443. (22) Rubinstein, M.; Bararn, A.; Luz,** *Z. Mol. Phys.* **1971,** *20,* **67.**

⁽²³⁾ Rablen, D. P.; Dodgen, H. W.; Hunt, J. P. *Inorg. Chem.* **1976,** *15,* **931. (24) Hunt, J. P.** *Coord. Chem. Rev.* **1971, 7, 1.**

⁽²⁵⁾ Ducornrnun, *Y.;* **Earl, W. L.; Merbach, A. E.** *Inorg. Chem.* **1979,** *18,*

⁽²⁶⁾ Keppert, D. L. *Inorg. Chem.* **1973,** *12,* **1938, 1942.**

A comparison of the τ values derived from the temperature-jump data (Table I) and τ_{H_2O} (Table II) suggests that the rate-determining equilibrium in the square planar to *oc*tahedral interconversion is that between high-spin $Ni([12]$ aneN₄)H₂O²⁺ and low-spin Ni([12]aneN₄)²⁺. Two extreme mechanisms for the spin change are possible. In the first mechanism the spin change occurs in Ni($[12]$ aneN₄)H₂O²⁺ prior to any stereochemical arrangement, and nickel(I1) subsequently moves into the N_4 plane with the prior, synchronous, or subsequent loss of the aquo ligand. The second mechanism differs only in that the spin change occurs subsequently to nickel(II) achieving coplanarity with the N_4 plane. The much shorter τ characterizing the interconversion in the $Ni([13]aneN₄)(H₂O)₂²⁺$ system in which the larger macrocyclic hole $(1.80 \text{ to } 1.92 \text{ A})^{2,11}$ should ease the movement of high-spin nickel(I1) into the N4 plane **suggests** that the second mechanism may be operative. Data from linear tetraamine systems also lend some support for this thesis. Spectrophotometric studies of the square planar to octahedral interconversion in the Ni(trien) $(\mathrm{H}_2\mathrm{O})_2^{2+}$ and Ni(2,3,2-tet) $(\mathrm{H}_2\mathrm{O})_2^{2+}$ systems (where 2,3,2-tet is **1,4,8,1l-tetraazaundecane)** have been interpreted in terms of the equilibrium between high-spin $Ni(trien)(H₂O)²⁺$ and low-spin Ni(trien)²⁺ being rate determing in the overall square planar-octahedral interconver sion.⁴ A reexamination of the data suggests that this may not be so since for the Ni(trien) $(H_2O)_2^{2+}$ system the spectrophotometrically determined τ is approximately equal to 0.6 μ s (296.2 K), whereas τ for the Ni(trien)(H₂O)₂²⁺/Ni-(trien)(H₂O)²⁺ equilibrium will be \sim 0.9 μ s (1/ τ = 2/ τ _{H₂O} $+ k₂$ see eq 1 and Table II). It is improbable that such similar τ values could be separately distinguished from the spectrophotometric data, and thus in the Ni(trien) $(H_2O)_2^{2+}$ system either the τ values characterizing the sequential equilibrium in eq 1 are very similar or else the octahedralfive-coordinate equilibrium is rate determining.²⁷ In the $Ni(2,3,2-tet)(H₂O)₂²⁺$ system, the spectrophotometrically determined τ is equal to 0.28 μ s, but in this case $\tau_{\text{H}_2\text{O}}$ is not available for comparison. Nevertheless the salient fact which emerges is that the more flexible Ni(trien) $(H_2O)_2^{2+}$ and the analogous 2,3,2-tet and $[13]$ ane $N₄$ systems are characterized

by a more labile four- to five-coordinate interconversion than is Ni([12]aneN₄)(H₂O)₂²⁺, which suggests that the ability of high-spin nickel(II) to achieve coplanarity with the N_4 plane is an important factor in the spin-change dynamics.

The shift in equilibrium toward the square-planar species with increase in temperature and electrolyte concentration (Table I) is consistent with such observations in related systems.^{2,3,16,28} As [LiClO₄] increases, ΔH° decreases systematically whereas **ASo** exhibits a smaller and nonsystematic variation. Ion pairing between the nickel(II) species and ClO₄- $(K_{IP} \approx 0.1$, calculated from the Fuoss²⁹ equation) will occur to an increasing extent as $[LiClO₄]$ increases and consequently the observed ΔH° and ΔS° values are composed of contributions from the ion-paired and nonpaired nickel(I1) **species.** In both the solid and solution states, C104- **does** not interact sufficiently with the nickel(I1) center to perturb the low-spin state of Ni($[12]$ aneN₄)²⁺. Thus it is improbable that ClO₄⁻ significantly modifies the component of ΔH° which arises from the bonding between nickel(I1) and the ligands in the first coordination sphere of the ion-paired species. However, if significant solvation changes accompany changes in spin state and stereochemistry, ion pairing with $ClO₄$ may modify the component of ΔH° arising from such solvation changes. In the $\text{Ni}([12] \text{ane} \text{N}_4)^{2+} \text{ClO}_4^-$ ion pair, ClO_4^- is likely to be in a position perpendicular to the N_4 plane, thereby blocking access of a potential aquo ligand to this axial coordination site, and also, as a consequence of the net difference in charge distribution between the ion pair and $Ni([12]$ ane $N_4)^{2+}$, causing a change in solvation. Mechanistically the first effect attributed to ion pairing should reduce the magnitude of k_1 as is seen to be the trend (Table I) as $[LiClO₄]$ increases from 2.00 to **4.00** mol dm-3. This trend is also accompanied by a decrease in ΔH^* and a tendency for ΔS^* to become more negative as [LiClO₄] increases; but because of the possible accumulation of errors in k_1 data as a consequence of its derivation through eq 3, a detailed mechanistic interpretation of these activation data is not warranted.

We plan to carry out ΔV^* measurements on this system to further clarify the mechanism involved.

Acknowledgment. We thank Mr. Joseph C. Crowley for computer fitting the **170** NMR data. This research was supported by NSF Grant No. GP-38711X.

Registry No. [Ni([12]aneN₄)] (ClO₄)₂, 71911-56-3; [Ni([13]aneN₄)](ClO₄)₂, 71901-50-3; Ni([12]aneN₄)²⁺, 56647-83-7; Ni- $([12]$ ane N_4 $(H_2O)_2^{2+}$, 71901-52-5.

(29) Fuoss, R. M. *J. Am. Chem.* **Soc. 1958,80, 5059.**

 (27) **It has recently been shown from microwave temperature-jump and "N NMR studies that the octahedral to five-coordinate interconversion is** the rate-determining step in the overall octahedral to square-planar interconversion in the system Ni(bbh) + $2L =$ Ni(bbh)L + $L \rightleftharpoons$ Ni(bbh)L₂ where bbh is tetradentate biacetyl bis(α-hydroxy-
benzylidene)hydrazone(2-)-N¹,N¹',O,O' and L is a substituted pyridine: **Cusumano, M.** *J. Chem. SOC., Dalton Trans.* **1976, 2133, 2137. Sa-chinidis,** J.; **Grant, M.** w. *J. Chem. SOC., chem. Commun.* **1978, 157.**

⁽²⁸⁾ Billo, E. J. *Inorg. Chim. Acta* **1979,** *37,* **L533-535.**